3 research outputs found

    Dual array EEG-fMRI : An approach for motion artifact suppression in EEG recorded simultaneously with fMRI

    Get PDF
    Objective: Although simultaneous recording of EEG and MRI has gained increasing popularity in recent years, the extent of its clinical use remains limited by various technical challenges. Motion interference is one of the major challenges in EEG-fMRI. Here we present an approach which reduces its impact with the aid of an MR compatible dual-array EEG (daEEG) in which the EEG itself is used both as a brain signal recorder and a motion sensor. Methods: We implemented two arrays of EEG electrodes organized into two sets of nearly orthogonally intersecting wire bundles. The EEG was recorded using referential amplifiers inside a 3 T MR-scanner. Virtual bipolar measurements were taken both along bundles (creating a small wire loop and therefore minimizing artifact) and across bundles (creating a large wire loop and therefore maximizing artifact). Independent component analysis (ICA) was applied. The resulting ICA components were classified into brain signal and noise using three criteria: 1) degree of two-dimensional spatial correlation between ICA coefficients along bundles and across bundles; 2) amplitude along bundles vs. across bundles; 3) correlation with ECG. The components which passed the criteria set were transformed back to the channel space. Motion artifact suppression and the ability to detect interictal epileptic spikes following daEEG and Optimal Basis Set (OBS) procedures were compared in 10 patients with epilepsy. Results: The SNR achieved by daEEG was 11.05 +/- 3.10 and by OBS was 8.25 +/- 1.01 (p <0.00001). In 9 of 10 patients, more spikes were detected after daEEG than after OBS (p <0.05). Significance: daEEG improves signal quality in EEG-fMRI recordings, expanding its clinical and research potential. (C) 2016 Elsevier Inc. All rights reserved.Peer reviewe

    Whole exome sequencing and co-expression analysis identify an SCN1A variant that modifies pathogenicity in a family with Genetic Epilepsy and Febrile Seizures Plus (GEFS+)

    No full text
    Objective Family members carrying the same SCN1A variant often exhibit differences in the clinical severity of epilepsy. This variable expressivity suggests that other factors aside from the primary sodium channel variant influence the clinical manifestation. However, identifying such factors has proven challenging in humans. Methods We perform whole exome sequencing in a large family in which an SCN1A variant (p.K1372E) is segregating that is associated with a broad spectrum of phenotypes ranging from lack of epilepsy, to febrile seizures and absence seizures, to Dravet Syndrome. We assessed the hypothesis that the severity of SCN1A-related phenotype was affected by alternate alleles at a modifier locus (or loci). Results One of our top candidates identified by WES was a second variant in the SCN1A gene (p.L375S) that was exclusively shared by unaffected carriers of K1372E allele. To test the hypothesized that L375S nullifies the loss-of-function effect of K1372E, we transiently expressed Nav1.1 carrying the two variants in HEK293T cells and compared their biophysical properties with the wild-type (WT) variant, and then co-expressed WT with K1372E or L375S with K1372E in equal quantity and tested the functional consequence. The data demonstrated that co-expression of the L375S and K1372E alleles reversed the loss-of-function property brought by the K1372E variant, while WT-K1372E co-expression remained partial loss-of-function. Significance These results support the hypothesis that L375S counteracts the loss-of-function effect of K1372E such that individuals carrying both alleles in trans do not present epilepsy-related symptoms. We demonstrate that monogenic epilepsies with wide expressivity can be modified by additional variants in the disease gene, providing a novel framework for gene-phenotype relationship in genetic epilepsies
    corecore